Essential Math Skills - Grade 5 (Practice 2) \qquad

- fractions
A. Write 3 equivalent fractions for each shaded part.

equivalent fractions

2.

equivalent fractions
B. Shade the diagram for each fraction. Then write 2 equivalent fractions.
1.

$\frac{8}{12}=$ \qquad $=$ \qquad
2.

$\frac{6}{24}=$ \qquad $=$ \qquad
C. Circle the equivalent fractions in each group.
1.

$$
\begin{array}{llll}
\frac{3}{4} & \frac{2}{4} & \frac{6}{8} & \frac{6}{10}
\end{array}
$$

2.

$\frac{2}{5}$
$\frac{8}{10}$
$\frac{10}{20}$
$\frac{6}{15}$
D. Write an improper fraction and a mixed number for each group of shapes.
1.

improper
fraction
mixed
number
2.

improper
fraction
E. Put ${ }^{64}<{ }^{39}$, " $>^{33}$, or ${ }^{6 \prime}={ }^{39}$ in the circles.

1. $\frac{2}{4}$

2. $\frac{3}{8}$
 $\frac{3}{6}$
3. $\frac{8}{7}$$1 \frac{1}{7}$
4. $1 \frac{2}{9}$$1 \frac{1}{9}$
F. Put each set of fractions in order from least to greatest.
5.

$\begin{array}{llll}\frac{2}{3} & \frac{1}{3} & 1 \frac{1}{3} & \frac{5}{3}\end{array}$
2. $1 \frac{1}{4} \quad \frac{6}{4} \quad 1 \frac{1}{3} \quad \frac{6}{3}$
G. Solve the problem.

Who has the most chocolates?
Boxes of Chocolates
Joe: $1 \frac{1}{4}$
Sue: $1 \frac{1}{8}$
Tim: $\frac{6}{4}$
Max: $\frac{2}{3}$

Essential Math Skills - Grade 5 (Practice 2 - Answers)

- fractions
A. Write $\mathbf{3}$ equivalent fractions for each shaded part.

1.

$\frac{\frac{4}{16}, \frac{2}{8}, \frac{1}{4}}{\text { equivalent fractions }}$
2.

$\frac{\frac{4}{12}, \frac{2}{6}, \frac{1}{3}}{\text { equivalent fractions }}$
B. Shade the diagram for each fraction. Then write 2 equivalent fractions.
1.

$$
\frac{8}{12}=\frac{4}{6}=\frac{2}{3}
$$

2.

$\frac{6}{24}=\underline{\frac{3}{12}}=\frac{1}{4}$
C. Circle the equivalent fractions in each group.
1.

2.

Essential Math Skills - Grade 5 (Practice 2 - Answers)
D. Write an improper fraction and a mixed number for each group of shapes.
1.

2.

$$
\frac{\frac{5}{2}}{\substack{\text { improper } \\
\text { fraction }}} \frac{2 \frac{1}{2}}{\begin{array}{c}
\text { mixed } \\
\text { number }
\end{array}}
$$

$\frac{\frac{13}{4}}{\substack{\text { improper } \\ \text { fraction }}}$
$\frac{3 \frac{1}{4}}{\begin{array}{c}\text { mixed } \\ \text { number }\end{array}}$
E. Put " $<$ ", " $>$ ", or " $=$ " in the circles.

1. $\frac{2}{4}>\frac{1}{4}$
2. $\frac{3}{8}<\frac{3}{6}$
3. $\frac{8}{7}=1 \frac{1}{7}$
4. $1 \frac{2}{9}>1 \frac{1}{9}$
F. Put each set of fractions in order from least to greatest.
5.

$\frac{2}{3} \quad \frac{1}{3} \quad 1 \frac{1}{3} \quad \frac{5}{3}$

$\frac{1}{3}$	$\frac{2}{3}$	$1 \frac{1}{3}$	$\frac{5}{3}$

2. $1 \frac{1}{4} \quad \frac{6}{4} \quad 1 \frac{1}{3} \quad \frac{6}{3}$
$1 \frac{1}{4} \quad 1 \frac{1}{3} \quad \frac{6}{4} \quad \frac{6}{3}$
G. Solve the problem.

Who has the most chocolates?

Boxes of Chocolates

Joe: $1 \frac{1}{4}$
Sue: $1 \frac{1}{8}$
Tim: $\frac{6}{4}$
Max: $\frac{2}{3}$

