

Grade 6

Number Sense and Numeration

• 6-digit Numbers

e.g.

5 is in the hundred thousands place; it means 500 000.

	Thou	usands				
	Hundred	Ten	One	Hundreds	Tens	Ones
ed ;; it	5	3	2	6	4	8

Expanded Form: 500 000 + 30 000 + 2000 + 600 + 40 + 8

Written Form: five hundred thirty-two thousand six hundred forty-eight

• Multiples and Factors

Multiple – the product of a given whole number multiplied by any other whole number

Use addition or multiplication to find the multiples of a given number.

e.g. The multiples of 4	The multiples of 4						
• by addition	• by m	ultiplic	ation				
$4 \xrightarrow{+4} 8 \xrightarrow{+4} 12 \xrightarrow{+4} 16$	$\frac{4}{4 \times 1}$	<u>8</u> 4 × 2	<u>12</u> 4 × 3	<u>16</u> 4 × 4			

The first four multiples of 4: 4, 8, 12, 16

Factors – whole numbers that are multiplied to get a product

e.g. Find the factors of 15.

 $15 = \mathbf{\underline{1}} \times \mathbf{\underline{15}}$ $15 = \mathbf{\underline{3}} \times \mathbf{\underline{5}}$

"1" is a factor of all numbers.

So, the factors of $15 \text{ are } \underline{1, 3, 5, \text{ and } 15}$.

• Prime Numbers and Composite Numbers **Prime Number** – any number with only 1 and

itself as factors: e.g. 7

Composite Number – any number greater than 1 that has more than 2 factors; e.g. 9

* 1 is neither a composite nor a prime number.

* 2 is the smallest prime number.

Steps to writing numbers as a product of prime factors:

- **1**st Write the composite number as the product of two factors.
- **2nd** Continue to factorize each composite number until all factors are prime numbers.
- **3rd** Write the number as a product of prime factors.

• Order of Operations

Perform the operations (+/-) from left to right.

Without Brackets	With Brackets
$357 - 128 + 69$ \blacksquare Do "-" first.	$357 - (128 + 69)$ \checkmark Do the part
= 229 + 69	= 357 - 197 Inside the brackets first.
= <u>298</u>	= <u>160</u>

• Commutative Property and Distributive Property

Commutative Property

In multiplication, numbers can be multiplied in any order.

e.g.
$$6 \times 17 \times 5$$

= $6 \times 5 \times 17$
= 30×17
= 510

Distributive Property

Use the distributive property to make division easier.

e.g.
$$(660 - 6) \div 6$$

 $= 660 \div 6 - 6 \div 6 \blacktriangleleft$ = 110 - 1Remove brackets by dividing each = 109

Popular Canada

term by 6.

2

• Fractions

Steps to comparing mixed numbers with different denominators:

 Compare the whole number parts. The one with a greater number is greater. If they are the same, go to Step 2.

2nd Compare the fraction parts by using diagrams. The one with a greater coloured part is greater.

When fractions with different denominators have the same numerators, the one with the smallest denominator is the greatest.

e.g. $\frac{2}{5}$ $\frac{2}{11}$ $\frac{2}{6}$ $\stackrel{<}{\leftarrow}$ same numerators $\stackrel{<}{\leftarrow}$ 5 is the smallest So, $\frac{2}{5}$ is the greatest.

• Decimals

e.g. Ones Tenths Hundredths Thousandths 4 2 8 5

"5" is in the thousandths place; it means 0.005.

Multiplication/Division of Decimals

A Decimal × A Whole Number

Multiply the same way as whole numbers.

e.g. 5 3.9 $\times 6$ 1 decimal place 23.4

* Remember to place the decimal point in the product.

A Decimal ÷ A Whole Number

Divide the same way as whole numbers.

A Whole Number × 0.1/0.01/0.001

Move the decimal point 1/2/3 places to the left.

e.g.
$$34 \times 0.1 = \underline{3.4}$$
 (1 place to the left)
 $34 \times 0.01 = \underline{0.34}$ (2 places to the left)
 $34 \times 0.001 = \underline{0.034}$ (3 places to the left)

• Fractions, Decimals, and Percents

Percent means "per hundred".

Fifty-three percent (53%) is coloured.

A percent can also be expressed as a fraction or a decimal. So, $53\% = \frac{53}{100} = 0.53$.

• Unit Rates and Ratios

- **Rate** a comparison of two quantities with different units; for example, number of apples and cost (6 apples for \$5)
- **Unit Rate** a comparison of two quantities with different units in which the second quantity is 1; for example, 100 km/h
- **Ratio** a comparison of quantities with the same unit; can be expressed in ratio form or in fraction form; for example, $3:4 \text{ or } \frac{3}{4}$

To find equivalent ratios, multiply or divide each term by the same number other than 0. Equivalent Ratios 6:10 = 18:30 6:10 = 3:5

e.g. $\frac{6}{10} = \frac{6 \times 3}{10 \times 3} = \frac{18}{30}$; $\frac{6}{10} = \frac{6 \div 2}{10 \div 2} = \frac{3}{5}$

Measurement

• Perimeter and Area

Area of a Parallelogram

Area of a Triangle = base × height ÷ 2

4

• Volume and Surface Area

Geometry

• 2-D Shapes

A figure has rotational symmetry if it fits on itself within a complete rotation. The order of rotational symmetry is the number of times the figure fits on itself in one complete rotation.

This shape has rotational symmetry of order **3**.

• 3-D Figures

Different views of a structure built by cubes:

A rotation is a transformation that turns a shape about a fixed point to form a congruent shape.

• Coordinate System

To locate a point in a coordinate system, the first coordinate is the horizontal position and the second coordinate is the vertical position.

(horizontal position, vertical position)

Patterning

Solving Equations Using Substitution:

e.g. Given a - 3 = 5

a + b - 3 = 11 a - 3 + b = 11 Rearrange. 5 + b = 11 Substitute. $b = \underline{6}$ Think: What number plus 5 is 11?

Graphs

Use the appropriate type of graphs to show data: **Circle Graph** – for showing data that are parts of a whole **Bar Graph** – for making comparisons among data **Double Bar Graph** – for comparing two sets of data **Line Graph** – for showing changes over time **Double Line Graph** – for comparing two sets of data over time

Probability

Theoretical Probability – a mathematical calculation of the chance that an event will happen in theory

e.g. Theoretical Probability = <u>no. of favourable outcomes</u> total no. of possible outcomes

The theoretical probability of landing on each section is $\frac{1}{4}$. If the spinner is spun 100 times, it is predicted that it will land on each section 25 times.

