

Grade 5

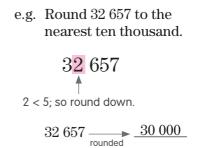
Number Sense and Numeration

• 5-digit Numbers

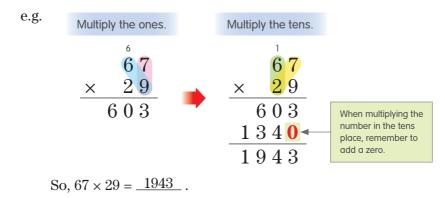
e.g.

Ten
ThousandsThousandsHundredsTensOnes3 is in the
ten thousands
place and means
30 000.

Standard Form: 32 657 - Starting from the right, add a space for every 3 digits.

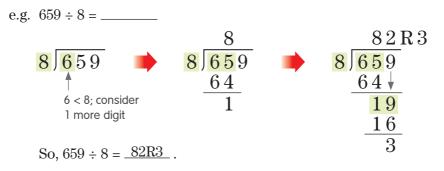

Expanded Form: 30 000 + 2000 + 600 + 50 + 7

Written Form: thirty-two thousand six hundred fifty-seven


• Rounding – changing a number to a simpler number

Steps to rounding a number to the nearest ten thousand:

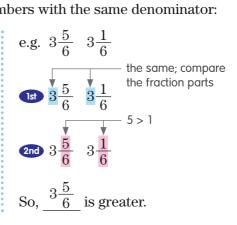
- **1** Look at the digit in the thousands place.
- 2nd If it is 5 or greater, round the number up; otherwise, round the number down.



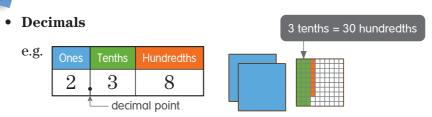
• Multiplication – 2-digit numbers by 2-digit numbers

SWOTH AT THE

• **Division** – 3-digit numbers by 1-digit numbers

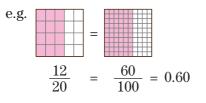

Fractions ۲

Three Types of Fractions


Proper Fraction	Improper Fraction	Mixed Number
a fraction with its numerator smaller than its denominator	a fraction with its numerator equal to or greater than its denominator	a number made up of a whole number and a proper fraction
e.g. $\frac{2}{3}, \frac{5}{8}$	e.g. $\frac{11}{5}, \frac{4}{4}$	e.g. $1\frac{1}{2}, 5\frac{2}{3}$

Steps to comparing mixed numbers with the same denominator:

- **1**st Compare the whole number parts. The one with a greater number is greater. If they are the same, go to Step 2.
- **2nd** Compare the fraction parts. The one with a greater numerator is greater.


2.38

"2" is in the ones place; it means 2.

"3" is in the tenths place; it means 0.3.

"8" is in the hundredths place; it means 0.08.

Equivalent Decimal Form

<u>0.60</u> is the equivalent decimal form of $\frac{12}{20}$.

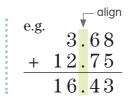
Mental Strategies for Multiplying/Dividing by Multiples of 10, 100, or 1000

× multiples of 10

Move the decimal point to the right.

e.g.
$$3.2.5 \times 10_{1 \text{ zero}} = \underline{32.5}_{1 \text{ zero}}$$

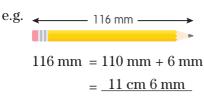
 $3.2.5.0 \times 1000_{3 \text{ zeros}} = \underline{3250}_{3 \text{ zeros}}$


÷ multiples of 10

Move the decimal point to the left.

e.g.
$$4.8 \div 10_{|_{zero}} = 0.48$$

 $0.4.8 \div 100_{|_{zero}} = 0.048$
 2 zeros


Addition/Subtraction of Decimals

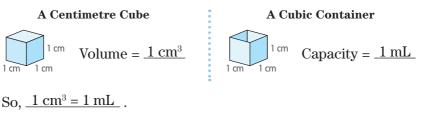
When you add or subtract decimal numbers, remember to align the decimal points. Then add or subtract as you would do with whole numbers.

Measurement

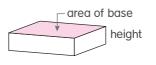
• Length

Relationships Between Units 1 km = 1000 m1 m = 10 dm = 100 cm $1 \, dm = 10 \, cm$ 1 cm = 10 mm

Perimeter and Area


Area = $length \times width$

Perimeter = $2 \times \text{length} + 2 \times \text{width}$ Perimeter = $2 \times 10 + 2 \times 6 = 32$ (cm) Area = $10 \times 6 = 60$ (cm²)


• Mass

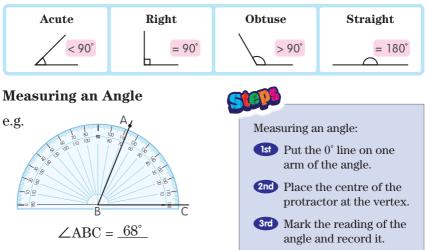
mg	g	kg	t		Relationships
small unit big unit			Between Units		
e.g.		4 k	g 650 g		1 t = 1000 kg 1 kg = 1000 g
		= 4000 g + 65		50 g	1 g = 1000 mg
		= 40	650 g_		

• Capacity and Volume

Volume of a Rectangular Prism Volume = area of base \times height

Geometry

2-D Shapes

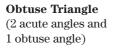

A regular polygon has all sides equal and all angles equal.

e.g. square a regular polygon

- 4 equal sides
- 4 equal angles
- 2 pairs of parallel sides • 4 lines of symmetry
- Can be cut into 2 congruent triangles

Angles

Types of Angles



Triangles

Naming Triangles by Angles

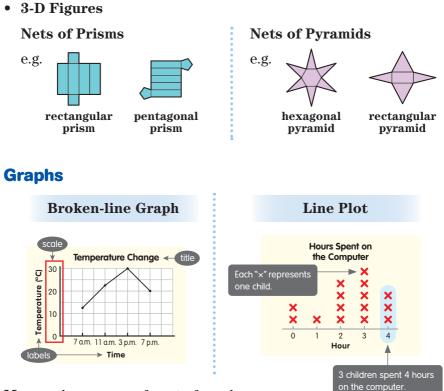
Acute Triangle (3 acute angles)

Right Triangle (2 acute angles and 1 right angle)

Naming Triangles by Sides

Equilateral Triangle (3 equal sides)

Isosceles Triangle (2 equal sides)

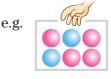

Scalene Triangle (no equal sides)

Mean – the average of a set of numbers

Refer to the line plot above. It shows the record of 15 children who spent 36 hours in total on the computer.

Mean = $36 \div 15 = 2.4$

So, the mean time spent on the computer was $\underline{2.4 \text{ h}}$.


Probability

• Probability

a number showing how likely it is that an event will happen

Probability

= No. of outcomes of a particular event Total no. of outcomes

Probability of picking a blue ball

```
= \frac{2}{6} - 2 \text{ blue balls}
```

