Cha	apter 1: Operations with Polynomials	
1.1	Factoring and Expanding Polynomials	4
1.2	Factorization	8
1.3	Perfect-square Trinomials and Differences of Squares	14
1.4	Completing the Square	18
	Quiz 1	22
Cha	apter 2: Forms of Quadratic Relations	
2.1	Parabolas	28
2.2	Factored Form	
2.3	Vertex Form	
2.4	Applications	
	Quiz 2	
Cha	apter 3: Transformations	
3.1	Stretches/Compressions and Reflections	58
3.2	Translations	
3.3	Transformation with Vertex Form	
	Quiz 3	70
Cha	apter 4: Quadratic Equations	
4.1	Solving Quadratic Equations	76
4.2	Quadratic Formula	82
4.3	Real Roots and Discriminants	88
4.4	Application of Quadratic Relations	92
	Quiz 4	96
Fin	al Test	102
Ans	swers	100

Chapter 2

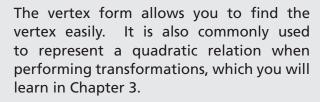
2.3 Vertex Form

Key Ideas

You have learned about the standard form and factored form of quadratic relations. In the standard form, the y-intercept and direction of opening can be easily identified, whereas in the factored form, the zeros can be found by inspection.

The vertex form is another common form of quadratic relations.

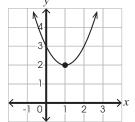
> **Vertex Form** $y = a(x - h)^{2} + k$ $\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ vertex: (h,k)



Examples

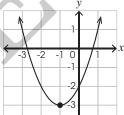
Identify the vertex of each quadratic relation.

 $y = (x - 1)^2 + 2$ vertex: (1,2)



Be mindful of the values of h and k. Make sure that they have the correct signs.

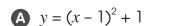
 $y = (x + 1)^2 - 3$



Identify the vertex and find the y-intercept of each quadratic relation. Then write the letters in the circles to match.

Try these!

(1)



B $y = -2(x-1)^2 + 1$

a. vertex:

a. vertex:

(1,)

b. y-intercept:

b. y-intercept:

 $y = (0 -)^2 + 1$

 $y = -2(0-1)^2 +$

y =

G $y = (x + 1)^2 - 1$

a. vertex:

a. vertex:

(,)

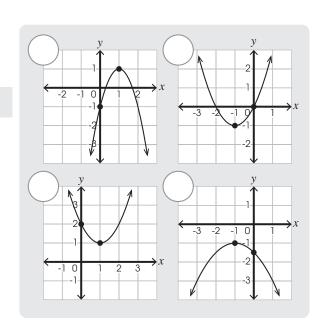
b. y-intercept:

b. y-intercept:

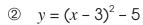
v =

y =

y =



Find the vertex, y-intercept, and direction of opening of each quadratic relation. Then label its graph.



a. vertex: _____

b. y-intercept: _____

c. direction of opening:

$$3 \quad y = -\frac{1}{3}(x+3)^2$$

a. vertex: _____

b. y-intercept: _____

c. direction of opening:

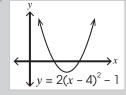
To determine whether a quadratic relation opens upward or downward, identify the value of a in its vertex form.

$$y = a(x - h)^2 + k$$

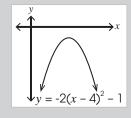
if a > 0, opens upward if a < 0, opens downward

e.g.
$$y = 2(x-4)^2 - 1$$

> 0; upward



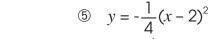
$$y = -2(x-4)^2 - 1$$
< 0; downward



a. vertex: _____

b. y-intercept: _____

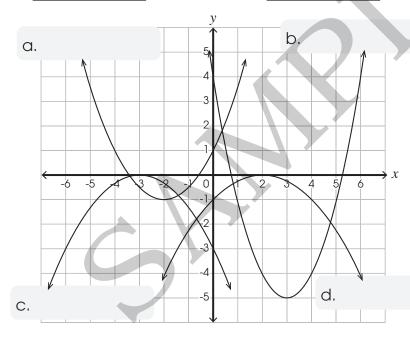
c. direction of opening:



a. vertex: _____

b. y-intercept: _____

c. direction of opening:



Find the features of the parabola of each quadratic relation written in vertex form.

quadratic vertex y-intercept direction axis of optimal max. or relation vertex y-intercept of opening symmetry value min.

$$y = (x-2)^2 + 1$$

$$y = -(x+3)^2 - 2$$

$$y = -3(x - 5)^2 + 10$$

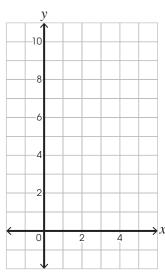
$$y = \frac{1}{4}(x+6)^2$$

Complete the table of values and graph each relation. Find the vertex. Then answer the question.

(8) $y = (x - 2)^2 + 1$

y = (x - 2)		
x	y	
-1		
0		
1		
2		
3		
4		
5		

vertex

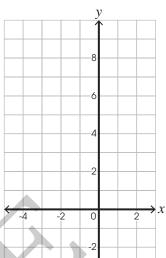


$$9 \quad y = (x+1)^2 - 2$$

•		
x	y	
-4		
-3		
-2		
-1		
0		
1		
2		

vertex

vertex

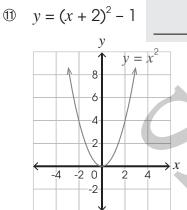


Relate the parameters, h and k, and the vertex of each relation. What do you find?

$$y = (x - h)^{2} + k$$

$$\uparrow \qquad \uparrow$$
translates
$$left \text{ or right} \qquad up \text{ or down}$$

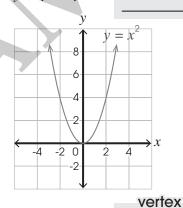
Identify and write the vertex of each relation. Then sketch its graph.



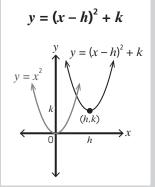
vertex

vertex

$$y = (x-2)^2 - 1$$

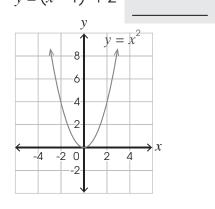


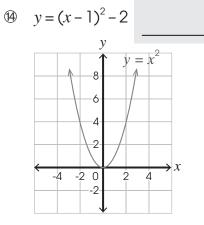
Hint



(h,k) is the vertex of $y = (x - h)^2 + k.$

 $y = (x - 1)^2 + 2$

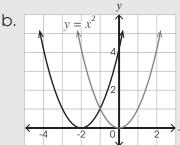


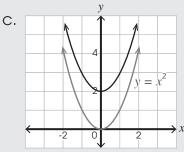


Answer the questions.

® The graph of $y = x^2$ is translated as shown. Find the quadratic relations of the translated graphs.

Q. $y = x^2 - y$ $y = x^2 - y$ $y = x^2 - y$ $y = x^2 - y$





® Match each quadratic relation with its graph.

a.
$$y = (x + 3)^2 - 1$$

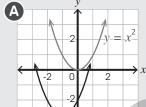
b.
$$y = (x + 3)^2 + 1$$

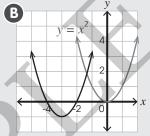
C.
$$y = (x + 1)^2 + 3$$

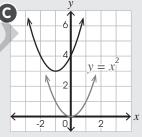
d.
$$y = (x - 1)^2 + 3$$

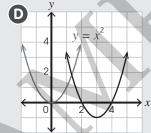
e.
$$y = (x + 1)^2 - 3$$

f.
$$v = (x - 3)^2 - 1$$

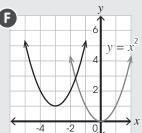












a.
$$y = x^2 - 5$$

b.
$$y = (x + 4)^2$$

C.
$$y = (x - 2)^2 + 4$$

d.
$$y = (x + 3)^2 - 2$$

- ® The graph of $y = x^2$ is translated as described below. Write the quadratic relation of each translated graph.
 - a. translated 5 units right and 1 unit down
 - b. translated 4 units left and 3 units up

The order of the transformations does not matter.

Quadratic equations are used by engineers of various fields. When developing equipment that has the resemblance of a curve, such as auto bodywork, quadratic equations are used to model them. Automobile engineers utilize quadratic equations to build the optimal brake system as well. Scan this QR code to learn more about the application of quadratic equations in different fields.

